Enhancing distributed differential evolution with multicultural migration for global numerical optimization
نویسندگان
چکیده
Differential evolution (DE) is a prominent stochastic optimization technique for global optimization. After its original definition in 1995, DE frameworks have been widely researched by computer scientists and practitioners. It is acknowledged that structuring a population is an efficient way to enhance the algorithmic performance of the original, single population (panmictic) DE. However, only a limited amount of work focused on Distributed DE (DDE) due to the difficulty of designing an appropriate migration strategy. Since a proper migration strategy has a major impact on the performance, there is a large margin of improvement for the DDE performance. In this paper, an enhanced DDE algorithm is proposed for global numerical optimization. The proposed algorithm, namely DDE with Multicultural Migration (DDEM) makes use of two migration selection approaches to maintain a high diversity in the subpopulations, Target Individual Based Migration Selection (TIBMS) and Representative Individual Based Migration Selection (RIBMS), respectively. In addition, the diversity amongst the individuals is controlled by means of the proposed Affinity Based Replacement Strategy (ABRS) mechanism. Numerical experiments have been performed on 34 diverse test problems. The comparisons have been made against DDE algorithms using classical migration strategies and three popular DDE variants. Experimental results show that DDEM displays a better or equal performance with respect to its competitors in terms of the quality of solutions, convergence, and statistical tests. 2013 Elsevier Inc. All rights reserved.
منابع مشابه
Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملWell Placement Optimization Using Differential Evolution Algorithm
Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore,the key issue to such automatic optimization is development of algorithms that can find acceptable solutions with a minimum numbe...
متن کاملDE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization
Differential Evolution (DE) is a fast and robust evolutionary algorithm for global optimization. It has been widely used in many areas. Biogeography-Based Optimization (BBO) is a new biogeography inspired algorithm. It mainly uses the biogeography-based migration operator to share the information among solutions. In this paper, we propose a hybrid DE with BBO, namely DE/BBO, for the global nume...
متن کاملMULTI-OBJECTIVE OPTIMIZATION OF ARCH DAMS USING DIFFERENTIAL EVOLUTION METHODS
For optimization of real-world arch dams, it is unavoidable to consider two or more conflicting objectives. This paper employs two multi-objective differential evolution algorithms (MoDE) in combination of a parallel working MATLAB-APDL code to obtain a set of Pareto solutions for optimal shape of arch dams. Full dam-reservoir interaction subjected to seismic loading is considered. A benchmark ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 247 شماره
صفحات -
تاریخ انتشار 2013